Kac-Ward formula and its extension to order-disorder correlators through a graph zeta function
نویسندگان
چکیده
A streamlined derivation of the Kac-Ward formula for the planar Ising model’s partition function is presented and applied in relating the kernel of the Kac-Ward matrices’ inverse with the correlation functions of the Ising model’s order-disorder correlation functions. Used in the analysis is the formula’s minor extension beyond planarity. A shortcut for both is enabled through the Bowen-Lanford graph zeta function relation.
منابع مشابه
Bass' identity and a coin arrangements lemma
There is no doubt that the Riemann zeta function is a function of great significance in number theory because of its connection to the distribution of prime numbers. The Ihara zeta function was first introduced by Ihara [5]. This zeta function is associated with a finite graph and aperiodic closed walks in it. Bass’ identity [1] shows that the Ihara zeta function is a determinant. It is shown i...
متن کاملZeta Functions of Graphs with Z Actions
Suppose Y is a regular covering of a graph X with covering transformation group π = Z. This paper gives an explicit formula for the L zeta function of Y and computes examples. When π = Z, the L zeta function is an algebraic function. As a consequence it extends to a meromorphic function on a Riemann surface. The meromorphic extension provides a setting to generalize known properties of zeta fun...
متن کاملThe Scattering Matrix of a Graph
Recently, Smilansky expressed the determinant of the bond scattering matrix of a graph by means of the determinant of its Laplacian. We present another proof for this Smilansky’s formula by using some weighted zeta function of a graph. Furthermore, we reprove a weighted version of Smilansky’s formula by Bass’ method used in the determinant expression for the Ihara zeta function of a graph.
متن کاملZeta functions of graphs with I actions
Suppose Y is a regular covering of a graph X with covering transformation group π = Z. This paper gives an explicit formula for the L2 zeta function of Y and computes examples. When π = Z, the L2 zeta function is an algebraic function. As a consequence it extends to a meromorphic function on a Riemann surface. The meromorphic extension provides a setting to generalize known properties of zeta f...
متن کاملA (p, V )-extension of Hurwitz-lerch Zeta Function and Its Properties
In this paper, we define a (p, v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results. keywords...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017